Reading List

This reading list contains key resources for the Transport Data Science module, organized by topic.

1 Core Reading

2 Skills Development

There is a wealth of material in physical books and online teaching the skills needed for this course. The advantage of online materials is that they can be updated more easily, and are often free to access. Below are some key resources for developing the skills needed for this course. Search online for topics you are interested in and see the Quarto gallery of books and the bookdown.org website for more resources.

2.1 Key Skills

2.2 Python

2.3 R

  • Advanced R
    • A comprehensive guide to advanced programming in R, covering topics such as functional programming and object-oriented programming.

3 Software and Tools

4 Research Applications

5 Data Visualization

5.1 Miscellaneous

See the full bibliography on Zotero for more resources, and feel free to suggest additions by opening an issue in the tds issue tracker.

6 References

Allaire, J.J., Teague, C., Scheidegger, C., Xie, Y., Dervieux, C., Woodhull, G., 2024. Quarto. https://doi.org/10.5281/zenodo.5960048
Arribas-Bel, D., 2019. A course on Geographic Data Science. JOSE 2, 42. https://doi.org/10.21105/jose.00042
Boeing, G., 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks. Computers, Environment and Urban Systems 65, 126–139. https://doi.org/10/gbvjxq
Carlino, D., 2025. Osm2streets.
Carlino, D., 2024. Od2net.
Carlino, D., Li, Y., Kirk, M., Konieczny, M., Kott, G., Bruce, Nissar, J., Nederlof, T., Steinberg, V., Lovelace, R., Dejean, M., Orestis, Lauzier, R., Sam, Wei, A., Lewis, B., Schmidt, C., Serdyuk, D., Czaplicki, F., Fullstop000, Raymakers, J., Volker, J., Huston, K., Schmid, L., Shenfield, M., Schimek, N., Newsome, T., Tobias, Andi, moo, 2022. A/B Street. https://doi.org/10.5281/zenodo.6331922
Dorman, M., Graser, A., Nowosad, J., Lovelace, R., 2025. Geocomputation with Python. CRC Press.
Fox, C., 2018. Data Science for Transport: A Self-Study Guide with Computer Exercises, 1st ed. 2018 edition. ed. Springer, New York, NY.
Heavey, K., n.d. Modern Polars.
Heer, J., 2021. Visualization Curriculum.
Heis, K., 2025. Introduction to GitHub.
Lovelace, R., 2021. Open source tools for geographic analysis in transport planning. J Geogr Syst 23. https://doi.org/10/ghtnrp
Lovelace, R., 2020. Reproducible road safety research with R. RAC Foundation.
Lovelace, R., Ellison, R., 2018. Stplanr: A Package for Transport Planning. The R Journal 10, 7–23. https://doi.org/10/gkb499
Lovelace, R., Goodman, A., Aldred, R., Berkoff, N., Abbas, A., Woodcock, J., 2017. The Propensity to Cycle Tool: An open source online system for sustainable transport planning. JTLU 10. https://doi.org/10.5198/jtlu.2016.862
Lovelace, R., Morgan, M., Hama, L., Padgham, M., 2019. Stats19: A package for working with open road crash data. Journal of Open Source Software. https://doi.org/10/gkb498
Lovelace, R., Nowosad, J., Münchow, J., 2025. Geocomputation with R. CRC Press.
McKinney, W., 2022. Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter, 3rd edition. ed. O’Reilly Media, Beijing Boston Farnham Sebastopol Tokyo.
Ortúzar S., J. de D., Willumsen, L.G., 2001. Modelling transport, 3rd ed. ed. J. Wiley, Chichester New York.
Rodrigue, J.-P., Comtois, C., Slack, B., 2013. The Geography of Transport Systems, Third. ed. Routledge, London, New York.
Szell, M., 2025. Course materials for: Geospatial Data Science.
Szell, M., Mimar, S., Perlman, T., Ghoshal, G., Sinatra, R., 2021. Growing Urban Bicycle Networks.
Tait, C., Beecham, R., Lovelace, R., Barber, S., 2024. Build it but will they come? Exploring the impact of introducing contraflow cycling on cycling volumes with crowd-sourced data. Journal of Transport & Health 35, 101758. https://doi.org/10.1016/j.jth.2024.101758
Tait, C., Beecham, R., Lovelace, R., Barber, S., 2023. Contraflows and cycling safety: Evidence from 22 years of data involving 508 one-way streets. Accident Analysis & Prevention 179, 106895. https://doi.org/10.1016/j.aap.2022.106895
Tufte, E.R., 2001. The Visual Display of Quantitative Information, 2nd ed. ed. Graphics Press, Cheshire, Conn.
Turrell, A., Monticone, P., Akyol, Z., Holman, J., Huang, Y., 2025. Python for Data Science. Zenodo. https://doi.org/10.5281/ZENODO.10518241
Wickham, H., Cetinkaya-Rundel, M., Grolemund, G., 2023. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 2nd edition. ed. O’Reilly Media, Beijing Boston Farnham Sebastopol Tokyo.