This dataset represents movement between administrative 'MSOA' zones in Leeds, UK. The data was collected in the 2011 Census and reports the mode of travel to work.

od_leeds

Format

A data frame with 948 rows and 18 variables:

geo_code1

character Origin

geo_code2

character Destination

all

double Travel (all modes)

from_home

double Ppl working from home

light_rail

double N. travelling by mode

train

double N. travelling by mode

bus

double N. travelling by mode

taxi

double N. travelling by mode

motorbike

double N. travelling by mode

car_driver

double N. travelling by mode

car_passenger

double N. travelling by mode

bicycle

double N. travelling by mode

foot

double N. travelling by mode

other

double N. travelling by mode

geo_name1

character Name of origin zone

geo_name2

character Name of destination zone

la_1

character Local authority of origin

la_2

character Local authority of destination

Examples

dim(od_leeds)
#> [1] 948 18
b = seq(0, 2000, by = 100) head(od_leeds)
#> # A tibble: 6 x 18 #> geo_code1 geo_code2 all from_home light_rail train bus taxi motorbike #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 E02002330 E02002330 66 0 0 0 0 0 1 #> 2 E02002330 E02002331 742 0 0 1 5 1 1 #> 3 E02002330 E02002334 50 0 0 0 3 1 0 #> 4 E02002330 E02006875 225 0 0 5 32 0 1 #> 5 E02002331 E02002331 849 0 0 0 34 1 6 #> 6 E02002331 E02002334 92 0 0 0 8 0 0 #> # … with 9 more variables: car_driver <dbl>, car_passenger <dbl>, #> # bicycle <dbl>, foot <dbl>, other <dbl>, geo_name1 <chr>, geo_name2 <chr>, #> # la_1 <chr>, la_2 <chr>
hist(od_leeds$all, breaks = b)
hist(od_leeds$foot, breaks = b)
hist(od_leeds$bicycle, breaks = b)